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ABSTRACT: We propose a hopping mechanism for diffusion of large
nonsticky nanoparticles subjected to topological constraints in both
unentangled and entangled polymer solids (networks and gels) and
entangled polymer liquids (melts and solutions). Probe particles with size
larger than the mesh size ax of unentangled polymer networks or tube
diameter ae of entangled polymer liquids are trapped by the network or
entanglement cells. At long time scales, however, these particles can diffuse
by overcoming free energy barrier between neighboring confinement cells.
The terminal particle diffusion coefficient dominated by this hopping
diffusion is appreciable for particles with size moderately larger than the
network mesh size ax or tube diameter ae. Much larger particles in polymer solids will be permanently trapped by local network
cells, whereas they can still move in polymer liquids by waiting for entanglement cells to rearrange on the relaxation time scales of
these liquids. Hopping diffusion in entangled polymer liquids and networks has a weaker dependence on particle size than that in
unentangled networks as entanglements can slide along chains under polymer deformation. The proposed novel hopping model
enables understanding the motion of large nanoparticles in polymeric nanocomposites and the transport of nano drug carriers in
complex biological gels such as mucus.

1. INTRODUCTION

Mobility of nonsticky nanoparticles in complex fluids,1,2

including polymer solutions and melts,3−10 biomacromolecular
solutions,11−21 cells,22−27 extracellular environments,28,29 and
colloidal suspensions,30 reflects local structure and dynamics of
these complex matrices. In previous work,31,32 we showed that
the motion of particles in polymer liquids (solutions and melts)
is different on short and long time scales because it is
determined by the dynamics of surrounding polymers. At
relatively short time scales the motion of particles is
subdiffusive as it is coupled to the segmental dynamics of
polymers, whereas at relatively long times the particle motion is
diffusive. The terminal diffusion coefficient of particles does not
depend on the polymer molecular weight if the particle size is
smaller than the entanglement length of the polymer liquids.
The diffusion coefficient of particles larger than the
entanglement length decreases with 3.4 power of the molecular
weight of linear polymers, because particles probe the terminal
dynamics of entangled polymers. These predictions have been
verified by a recent systematic experimental study.33 The
diffusion coefficient of these large particles decreases with
increasing matrix viscosity; however, the large particles can still
move as the polymer liquids relax, no matter how slow the
relaxation is. The question then is as follows: What is the
particle mobility in polymers that cannot relax, for example, in
permanently cross-linked networks? Can particles move
through permanently cross-linked networks if their size is
larger than the network mesh size? A prior work34 addressed

this question via a mode-coupling approach and obtained the
fact that the hopping distance of large particles in polymer
melts increases with particle size, while the hopping energy
barrier asymptotically varies proportionally to the particle
volume, which is qualitatively different from the results of our
paper. On the basis of our prior work,31,32 we present a
systematic scaling description for diffusion of such large
particles in both unentangled and entangled polymer solids
(networks and gels) and entangled liquids (melts and
solutions).
We argue that in permanently cross-linked networks the only

way for a particle with size exceeding the network mesh size to
leave a confinement cage is by hoppingwaiting for the
fluctuation of a gate (loop) between two neighboring
confinement cages to become large enough to slip around
the particle. To describe the particle hopping diffusion, we
introduce two important parameters, hopping free energy
barrier and hopping step size. The free energy barrier is
determined by the deformation of a loop (gate) as it slips
around the particle. To describe particle confinement in
unentangled networks with strongly overlapping chains and
to estimate the hopping step size, we introduce a model of
“overlapping elementary networks”.
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The idea of hopping diffusion of particles in unentangled
permanent networks is extended to describe diffusion of
particles in entangled polymer networks, which contain both
permanent cross-links and topologically trapped entanglements.
Unlike the fixed permanent cross-links, entanglements can slide
along polymer chains. Therefore, the confinement cages due to
entanglements are “softer” in comparison to the network cages
formed by permanent cross-links. Consequently, there is a
range of particle sizes for which the particle diffusion is
dominated by hopping of particles between entanglement
cages.
Unlike entangled polymer networks, there are no permanent

cross-links in entangled polymer liquids; polymers in entangled
liquids can relax on long time scales. We show that there is a
certain (polymer molecular weight dependent) particle size
above which the hopping diffusion of particles between
entanglement cages becomes very difficult; it is relatively easier
for the very large particle to diffuse at long time scales by
“waiting” for the entangled polymer liquid to relax and flow
around the particle.
The paper is structured as follows. In section 2, we discuss

hopping diffusion of large particles in unentangled polymer
solids (networks and gels). To estimate the step size and
entropic free energy barrier for hopping, we model the “real”
unentangled network by many overlapping “elementary”
networks. Hopping diffusion of particles in entangled polymer
solids is discussed in section 3. Section 4 presents the diffusion
of probe particles in entangled polymer liquids. Specifically, we
compare the particle motion due to the relaxation of polymer
chains and that due to hopping and calculate the range of
parameters for which each of two diffusion modes dominates.
Concluding remarks are presented in section 5.

2. UNENTANGLED POLYMER SOLIDS (Nx < Ne)
A typical polymer network has both chemical cross-links and
topological entanglements. The properties of the polymer
network are dominated by the type of constraints that has
higher density. Therefore, we distinguish two types of
networks: unentangled and entangled polymer networks,
depending on the relative values of network mesh size and
entanglement length scale. The network mesh size is defined as
the average distance between two neighboring permanent
cross-links along the chain and can be measured by the value of
unentangled network elastic modulus. The entanglement length
is measured by the magnitude of entanglement plateau
modulus.35−37 The case of high density of permanent cross-
links, with the network mesh size smaller than the
entanglement length, is classified as unentangled polymer
network. In the opposite case of entangled polymer network
the network mesh size is larger than the entanglement length
and the network properties are dominated by the topological
entanglements between network strands.
Consider the motion of a probe particle of size d in a dry,

monodisperse unentangled permanently cross-linked network
above its glass transition temperature Tg and crystallization
transition temperature Tc. Let us denote the number of Kuhn
monomers between two neighboring cross-links by Nx and the
size of a network strand by ax ≃ bNx

1/2, where b is Kuhn length.
In a typical network there are many network strands
overlapping within the volume pervaded by a network strand
(see Figure 1). The overlap parameter P ≃ Nx

1/2 is defined as
the number of network strands within the volume ax

3 ≃
(bNx

1/2)3 pervaded by one network strand.

2.1. Hopping Diffusion. A large probe particle of size d (d
> ax) is confined inside the unentangled network, as shown in
Figure 1a. However, it is still possible for this particle to escape
from the cage formed by network strands confining the particle.
This escape−a hopping step−occurs by a large fluctuation of
the one of these strands. To understand this process, we model
the monodisperse unentangled network by P overlapping yet
independent “elementary” networks, as shown in Figure 1b.
The details of this representation are discussed in Appendix A.
There is on the order of one network strand per volume ax

3 in
each of these “elementary” networks.
The “elementary” networks are not static; instead, they are

fluctuating all the time. The fluctuation of an “elementary”
network cage can be large enough to allow one of the network
strands to slip around the particle. In this case a hopping event
occurs and the particle enters a neighboring cage of the
network. We use the model of “elementary” networks to
elucidate the hopping diffusion of large particles.

2.1.1. Hopping Step Size. Each of P “elementary” networks
constrains the particle independently and tends to localize the
particle at the “center” of its own cage. We model the constraint
from an “elementary” network by a virtual chain with one of its
two ends attached to the particle center and the other anchored
at the center of the “elementary” network cage, as illustrated by
the dashed lines and black dots in Figure 2a. The number of
monomers, ncage, per virtual chain is determined by equating its
elastic energy and the elastic deformation energy of an
“elementary” network when the particle is shifted from its
equilibrium position by a distance δr (see Appendix C):

δ δ≃k T
r

b n
k T

d
a

r
x

B

2

2
cage

B 3
2

(1)

which gives

≃n N a d( / )x xcage (2)

Instead of fluctuating around the cage “center” in a particular
“elementary” network, the particle finds an “optimal” position
at which the restoring forces from all the “elementary”
networks are balanced. The centers of cages in P “elementary”
networks are randomly distributed within the volume on the
order of ax

3 around the equilibrium position of the probe
particle, as illustrated in Figure 2b. At this equilibrium position

Figure 1. Unentangled polymer network modeled by overlapping
“elementary” networks. (a) Schematic visualization of a particle of size
d in an unentangled polymer network with strands of average size ax.
The solid circles represent permanent cross-links. There are P ≃ Nx

1/2

network strands within the pervaded volume ax
3 of a network strand.

(b) The unentangled polymer network is modeled by P overlapping
yet independent “elementary” polymer networks, with details
discussed in Appendix A. One of these “elementary” networks is
shown by bright black lines while the remaining P − 1 “elementary”
networks are shown by dimmed color lines.
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the net force exerted by these P “elementary” networks on the
particle is zero. The restoring force fj applied to the particle
from the jth “elementary” network is linearly proportional to
the deviation δrj of the particle from the “center” of the
“elementary” network cage, fj = [kBT/(b

2ncage)] δrj, as the
confinement potential is parabolic (see eq 1 and Appendix C).
Assuming that all virtual chains have the same number of
monomers ncage, we have

∑ ∑ δ= =
= =

k T
b n

f r 0
j

P

j
j

P

j
1

B
2

cage 1 (3)

The hopping step size for a large probe particle (d > ax) moving
through the unentangled network is much smaller than that for
an “elementary” network because the particle is constrained by
many surrounding overlapping “elementary” networks. During
a single hopping step the particle moves by a displacement Δr
and arrives at a new equilibrium position. The particle most
likely escapes from the cage of an “elementary” network i,
whose center is at the maximum distance from the equilibrium
position of the particle, as the corresponding free energy barrier
is the lowest compared with that of other “elementary”
networks.38 Consequently, after leaving the cage center ri of the
“elementary” network i, the particle enters the neighboring
cage, whose center ri + ax is separated by a vector ax from the
old cage, and deviates by a vector δri′ = δri + Δr − ax from the
new equilibrium position. Note that deviations from the cage
centers of all other P − 1 “elementary” networks to the new
equilibrium position of the particle are changed by a vector Δr
(see Figure 2). Since at this new equilibrium position the net
force exerted on the particle by P “elementary” networks is still
zero, one obtains the equation for the step size Δr of particle
hop

∑ δ δ+ Δ + + Δ − =
= ≠

r r r r a( ) ( ) 0
j j i

P

j i x
1, (4)

Equation 4 can be rewritten using eq 3 as PΔr − ax = 0, which
gives the magnitude of the step size of particle hop in a dry
network

Δ ≃ ≃ ≃r a P a N b/ /x x x
1/2

(5)

It is important to emphasize that this displacement Δr is P ≃
Nx

1/2 times smaller than the hopping step size ax ≃ bNx
1/2 in a

single “elementary” network.
2.1.2. Hopping Entropic Free Energy Barrier. To hop from

one cage to a neighboring one, the large probe particle has to
overcome a free energy barrier, which is defined as the
difference between the maximum and the initial elastic
deformation energy of the network strands during the hopping
event. To estimate the energy barrier, one might think that it is
necessary to consider the deformation energy of all P (d3/ax

3)
network strands affected by the large probe particle,34 which is
the number of network strands d3/(b3Nx) within its pervaded
volume d3. However, not all of the affected network strands are
deformed in the same way during a single hopping event.
Indeed, it is enough for one network loop to slip around the
particle for this particle to hop between neighboring cages.
Stretching the slipping loop also results in further deformation
of loops connected to it. However, deformation of all other
affected loops can be taken into account using the concept of
“virtual chains”, which, effectively, only renormalizes the length
of the slipping loop. The size of a loop in “elementary”
networks is about ax (see Appendix A).
The energy barrier due to the slipping loop corresponds to

the “transition” state in which the large particle is leaving the
initial cage and is at the onset of entering the neighboring cage
(see “transition” state in Figure 3). In this state the network

loop is stretched from length ax to the order of particle size d
(in fact, the peripheral length πd of the particle). Therefore, the
entropic free energy barrier contributed from the deformation
of the loop slipping around the particle (barrier loop) during a
single hopping event is

Δ ≃U k T d a( / )xhop
net

B
2

(6)

Figure 2. Step size of a large probe particle hopping between two
neighboring cages in a monodisperse unentangled polymer network.
(a) The unentangled polymer network is modeled by P overlapping
“elementary” networks with their network cage centers r1, ..., ri, ..., rP
(dots) randomly distributed around the fluctuation center of the
particle (its equilibrium position). The constraint applied to a large
particle of size d > ax from an “elementary” network is modeled by a
virtual chain with ncage monomers. The virtual chain has one of its two
ends attached to the particle center, and the other anchored to the
center of a cage of ith “elementary” network, as shown by the black
dots. (b) During a single hopping event the particle leaves its initial
equilibrium position O and arrives at a neighboring equilibrium
position O′ with a step size Δr. This hop is achieved by the particle
leaving the confinement cage of the “elementary” network i with the
center ri that is most likely to be the furthest from the initial
equilibrium position O of the particle and entering the neighboring
cage of the same “elementary” network with the center at ri + ax, while
staying in the same cages of all the rest “elementary” networks.

Figure 3. Illustration of a large probe particle hop from one network
cage to a neighboring cage with only one network loop (highlighted by
red) slipping around the particle.
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2.2. Dry Unentangled Polymer Networks. A loop of size
larger than d can slip around the particle, resulting in a hopping
step. The hopping free energy barrier (eq 6) determines the
probability of a loop fluctuating to a size larger than the particle
size d. This probability is proportional to ∫ d

∞ dx exp (−x2/ax2)/
ax. The waiting time for this hopping step in a dry unentangled
polymer network is

∫τ τ

τ

≃

≃

∞
− x

a

d a d a

/ e
d

( / ) exp( / )

w x
d

x a

x

x x x

net /

2 2

x
2 2

(7)

where

τ τ≃ Nx x0
2

(8)

is the Rouse relaxation time of a network strand, at which a
loop attempts to slip around the particle but is unlikely to
succeed utill τw

net. The monomer relaxation time τ0 in eq 8 is

τ ζ≃ b k T( )/0
2

B (9)

with ζ corresponding to the monomeric friction coefficient.
The mean-square displacement for a large particle hopping in

a dry unentangled polymer network is proportional to the
number of steps t/τw

net that the particle makes during a certain
period of time

τ τ

τ

⟨ ⟩ ≃ ≃

>

−r t b
t

b
t

d a

t

( )
( / )

e ,

for
w x x

d a

x

2
hop
net 2

net
2 / x

2 2

(10)

The hopping process occurs on time scales longer than the
relaxation time of a network strand τx, but with a very small
probability to succeed during this relatively short time interval.
The probability of a hop increases with time interval and
becomes significant enough for a successful hopping to occur at
the waiting time scale τw

net (eq 7). In addition to hopping the
particle is fluctuating within the network cells without leaving
them at times longer than relaxation time of a network strand
τx. We model the total restoring force on the particle due to P
“elementary” networks by elastic force from a composite virtual
chain, which consists of P virtual chains with ncage monomers
connected in parallel, as shown in Figure 2. The number of
monomers ncage/P of such a composite virtual chain determines
the mean-square fluctuations of the particle on time scales
longer than network strand relaxation time:

τ τ⟨ ⟩ ≃ ≃ < <r b n P a dP t/ /( ), forx x
2

fluct
net 2

cage
3

hop
net

(11)

One can use microrheological approach to estimate the
network modulus from the amplitude of these thermal
fluctuations of the particle: Gx ≃ kBT/(d⟨r

2⟩fluct
net ) ≃ kBTP/ax

3

(see eq C.3).
We would like to stress that the particle motion at times t >

τx is due to the superposition of the two processes: fluctuations
around the center of a network cage but without leaving it (eq
11) and hopping between neighboring network cages (eq 10).
The contribution to the particle mean-square displacement
from hopping ⟨r2 (t)⟩hop

net becomes important at certain time
scale τhop

net , at which ⟨r2(t)⟩hop
net is comparable to the mean-square

displacement ⟨r2⟩fluct
net due to particle fluctuations within the

confinement cage. This gives the crossover time at which
hopping diffusion becomes observable

τ τ≃ a Pb d a[ /( )] exp( / )x x xhop
net 2 2 2 2

(12)

The mean-square displacement of the particle does not
significantly increase until time scale τhop

net , as shown in Figure
4. At time scales longer than τhop

net the mean-square displacement

of large particles is dominated by the hopping diffusion (see eq
10):

τ

τ

⟨ ⟩ ≃ +

> >

r t a dP t

d a t

( ) [ /( )](1 / ),

for and

x

x x

2 net 3
hop
net

(13)

The particle diffusion coefficient due to hopping in a dry
unentangled network (see eq 10) is

τ≃ −D b a d d a( / )( / ) exp( / )x x xhop
net 2 2 2

(14)

For a relatively large particle, the hopping diffusion is extremely
slow as the mean-square displacement of particles decreases
exponentially with the square of particle size.
At times shorter than the relaxation time τx (eq 8), the

motion of a large probe particle (d > ax) is unaffected by
network cages and is similar to particle movement in polymer
melts. The particle motion on times t < τx is subdiffusive with
the mean-square displacement proportional to the square root
of time, since particle motion is coupled to the segmental
dynamics of network strands, as shown by the solid line with
the slope 1/2 in Figure 4.31

η ζ τ

τ τ τ

⟨ ⟩ ≃ ≃

≃ < <

r t
k T

t d
t

k T
b t d

t

b d t t

( )
( ) ( / )( / )

( / )( / ) , for x

2
sbd

B

eff

B

0
1/2

3
0

1/2
bal (15)

Figure 4. Time dependence of the product of mean-square
displacement ⟨Δr2(t)⟩ and the particle size d for large particles
subjected to the confinement from cages of size a. The motion of large
particles (d > a) is not affected by confinement cells at time scales
shorter than the relaxation time τa (see eq 23) of a strand. The particle
motion is ballistic at very short time scales (t < τbal; eq 18) and crosses
over into subdiffusive at longer time scales (τbal < t < τa). At time scales
longer than τa the particles are trapped by confinement cells; they
cannot move until time scale τw, at which the particles start to hop
between neighboring confinement cells. The hopping diffusion
becomes experimentally observable on time scale τhop, at which
mean-square displacement of the particle due to hopping becomes
comparable to that due to fluctuations of the particle within a
confinement cell, a2b/d (eq 11). For dry unentangled polymer
networks a ≡ ax, τa ≡ τx (eq 8), τw ≡ τw

net (eq 7), and τhop ≡ τhop
net (eq

12); for entangled polymer networks and melts, a ≡ ae, τa ≡ τe (eq 23),
τw ≡ τw

ent (eq 22), and τhop ≡ τhop
ent (eq 26). Logarithmic scales.
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The effective viscosity ηeff(t) “felt” by the particle during time
interval t corresponds to a melt with chains containing (t/τ0)

1/2

monomers coherently moving at this time.31

At times shorter than the crossover time τbal, the particle
moves along ballistic trajectories. The mean-square velocity of
the particle v is determined by the equipartition theorem

υ⟨ ⟩ ≃m k T2
B (16)

Substituting r = υt in eq 16 we find the particle mean-square
displacement for ballistic motion (see Figure 4):

τ⟨ ⟩ ≃ <r k T m t t( / ) , for2
bal B

2
bal (17)

Matching eqs 15 and 17 at t = τbal gives the crossover time
between the ballistic and subdiffusive regimes:

τ τ
ζτ

≃
⎛
⎝⎜

⎞
⎠⎟

mb
dbal 0

0

2/3

(18)

The width of the ballistic regime is determined by the time
scale τbal. For large particles with higher density ρb in liquids of
low viscosity, it is possible that τbal > τ0, or mb/(ζτ0d) > 1. This
dimensionless ratio can be written as mb/(ζτ0d) ≃ (d/b)2 (ηref/
ηs)

2, where the reference viscosity ηref = (ρbkBT/b)
1/2 is

determined by the particle density ρb and Kuhn length b with a
typical value ηref ∼ 10−4 Pa·s. Thus, for the ratio of the particle
to Kuhn monomer size larger than the ratio of viscosities d/b >
ηs/ηref the ballistic regime ends at time scales longer than τ0 and
“eats” part of the subidiffusion regime. Indeed, the ballistic
regime is experimentally observable by using particle tracking of
ultrahigh temporal-spatial resolutions.39 The ballistic regime
puts the short-time cutoff at τbal to the application of
microrheology, since the particle motion at time scales t <
τbal is not coupled to the modes of the probed matrix. The long-
time cutoff to the application of microrheology is determined
by the hopping process, as the finite zero-shear-rate viscosity
predicted by the generalized Stokes−Einstein approach from
particle diffusion at time scales t > τhop

net does not correspond to
the infinite zero-shear-rate viscosity of a permanent network.
2.3. Unentangled Polymer Gels. An unentangled

polymer gel can be treated as an “effective” unentangled dry
polymer network in which the “effective” monomers are
correlation blobs. Therefore, the results of particle hopping in
dry polymer networks can be directly applied to polymer gels
with hopping step size b replaced by the correlation length ξ
(see eq D.2) and other parameters replaced by concentration
dependent ones (see eqs D.3 and D.4 in Appendix D). The key
elements for hopping diffusion of large particles in unentangled
polymer gels are summarized in Table 1 and their detailed
discussion is presented in Appendix D.
Note that we consider above only monodisperse polymer

networks. However, real polymer networks are polydisperse as
they are typically made of strands of different molecular weight.

The motion of a large particle in real polymer networks could
be affected by the polydispersity. Interestingly, we find that
there is still a window in which the particle motion is not
affected by the network polydispersity even for particles larger
than the average network loop size (see Appendix B). Within
this window, the variation of energy barriers due to
polydispersity is smaller than the thermal energy kBT. As a
result, polydispersity of the network becomes important only
for very large particles with size larger than average loop size d
> axl ̅1/2, in which l ̅ ≃ ln P is the average number of network
strands in a loop (see Appendix A). These particles diffuse
extremely slow with exponentially small diffusion coefficient.
This interesting behavior will be the subject of future
explorations.

3. ENTANGLED POLYMER SOLIDS: ENTANGLEMENT
CAGES ARE “SOFTER”

Fluctuations of chains in polymer solids (networks and gels)
are suppressed by both permanent cross-links and entangle-
ments. In entangled polymer solids the density of permanent
cross-links is lower than the density of entanglements so that
the tube diameter ae is smaller than the network mesh size ax.
The hopping diffusion of large particles with size ae < d < ax

2/ae
in entangled polymer solids can be readily obtained by
extending the results of hopping diffusion of large particles in
unentangled polymer solids with ax < ae (see section 2).
However, unlike the loop formed in permanently cross-linked
networks, the loop formed by entanglements does not have
fixed number of monomers. Indeed, the number of monomers
contained in a particular loop increases when the loop slides
over the particle because some chain segments far from the
particle are pulled in as the particle slips through the loop. The
number of monomers n in the loop is determined by the
condition that the tension in the loop is balanced by the tube
tension kT/ae:

≃k Td nb k T a/( ) / eB
2

B (19)

in which the term kBTd/(nb
2) corresponds to the tension in the

loop of n monomers, and the tube diameter (entanglement
length) ae ≃ bNe

1/2 with Ne being the number of monomers per
entanglement strand. Therefore, the number of monomers in
the loop that slides over the particle is

≃n a d b/e
2

(20)

and the free energy barrier for particle hopping between
entanglement cages is

Δ ≃ ≃U k Td nb k Td a/( ) / ehop
ent

B
2 2

B (21)

This free energy barrier for the probe particle to hop between
entanglement cages (eq 21) has a weaker (linear) dependence
on particle size d/ae in comparison to the quadratic dependence

Table 1. Parameters for Hopping Diffusion of Particles in Unentangled Polymer Solids and Entangled Solids and Liquidsa

unentangled solids entangled solids and liquids

dry networks gels dry networks and melts gels and solutions

Δr b ξ b ξ

ΔU/kBT d2/ax
2 d2/ax

2 d/ae d/ae
Dhop (b2/(τxd/ax)) exp(−d2/ax2) (ξ2/(τxd/ax)) exp(−d2/ax2) (b2/τe) exp(−d/ae) (ξ2/τe) exp(−d/ae)

aΔr is the hopping step size, ΔU is the entropic free energy barrier, and Dhop is the hopping diffusion coefficient. Length scales: b is the size of a
Kuhn monomer, ξ is correlation length, ax is the network strand size, and d is the particle size. Time scales: τ0 is the monomeric relaxation time, τξ is
relaxation time of correlation volume, τx and τe correspond to the relaxation time of a network and entanglement strand respectively.
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for cross-linked networks (see eq 6). This linear free energy
barrier (eq 21) represents the softening of the confining
potential due to the increase in the distance between
entanglements under network stretching.40 Notice that the
polydispersity of chain lengths does not affect the barrier
energy (eq 21) in the case of lightly cross-linked networks (Nx
> Ne). Our prediction for the particle size dependence of free
energy barrier in entangled polymer melts (eq 21) is different
from prediction of ref 34.
The waiting time for the particle to hop between two

neighboring entanglement cages is (see eq 7)

∫τ τ τ≃ ≃
∞

− x
a

/ e
d

ew e
d

x a

e
e

d aent / /e e

(22)

in which the relaxation time of an entanglement strand is

τ τ≃ Ne e0
2

(23)

This waiting time (eq 22) increases exponentially with the
relative size of the particle d with respect to the size of an
entanglement strand ae, but with a relatively weaker depend-
ence on particle size d than that for unentangled polymer solids
(see eq 7). This weaker dependence is due to the lower energy
of nonaffine deformation of entanglement strands (see eq 21)
in comparison with stronger affine deformation of unentangled
polymer networks and gels (see eq 6). For instance, for
particles with size d twice larger than the entanglement mesh ae
or network mesh size ax (d/ae = d/ax = 2) the ratio of two
waiting times is τw

ent/τw
gel ≃ exp ((d/ae) − (d/ax)

2) ≃ exp (2−22)
≃ 10−1.
Since the particle “feels” network modulus Ge ≃ kBT/(ae

2b),
the mean-square fluctuations of the particle trapped by the
entanglement net is:

τ τ⟨ ⟩ ≃ ≃ < <r k T G d a b d t/( ) / , fore e e
2

fluct
ent

B
2

hop
ent

(24)

The ballistic and subdiffusive motion at shorter time scales are
similar to the case of unentangled networks (eqs 15 and 17)
with the crossover time at the upper boundary of subdiffusive
regime equal to the relaxation time of entanglement strand τe,
see Figure 4.
Mean-square displacement of a large probe particle (d > ae)

due to hopping is proportional to the number of hops that the
particle makes during a certain time period t with the same step
size b as in the case of unentangled dry network (eq 5)

τ τ

τ

⟨ ⟩ ≃ ≃ −

>

r t b t b d a t

t

( ) / exp( / )( / ),

for

w e e
2

hop
ent 2 ent 2

hop
ent

(25)

which is determined by the relative size of the particles with
respect to the entanglement mesh size ae. The crossover time at
which the mean-square particle displacement due to hopping
diffusion ⟨r2⟩hop

ent (eq 25) becomes comparable to the mean
square particle fluctuation in an entanglement cage ⟨r2⟩fluct

ent (eq
24) is

τ τ≃ a bd d a( / ) exp( / )e e ehop
ent 2

(26)

Diffusion coefficient of large probe particles in entangled
polymer solids is exponentially small

τ≃ −D b d a( / ) exp( / )e ehop
ent 2

(27)

Mobility of relatively large particles (ae < ax < d < de ≃ ax
2/

ae) is affected by both entanglements and permanent cross-

links, but dominated by the entanglements. This is because the
entropic free energy barrier due to permanent cross-links,
kBT(d/ax)

2, is smaller than that from entanglements, kBT(d/ae),
for ae < ax < d < de. The two barriers are on the same order at d
≃ de ≃ ax

2/ae. The motion of a very large particle (d > de > ax)
is dominated by permanent cross-links and essentially not
affected by entanglements, because the entanglements are
under large deformation due to the presence of the very large
particle, leading to the slippage of them toward the permanent
cross-links, as discussed in detail in Appendix E. Therefore, the
particle diffuses as if it is in unentangled polymer networks (see
Section 2). The crossover at d ≃ de ≃ ax

2/ae between
entanglement and cross-link dominated regimes can be
approximately described by the sum of the two free energy
barriers

Δ ≃ +U k T d a k T d a( / ) ( / )e x
ent

B B
2

(28)

The terminal diffusion coefficient of particles of different
sizes in an entangled polymer network is presented by the solid
line in Figure 5. Hopping diffusion of a particle in entangled

polymer gels is similar to that in entangled polymer networks,
with the hopping step size b replaced by correlation length ξ
(eq D.2) and corresponding parameters replaced by concen-
tration dependent ones (see Appendices D and F). The key
elements for hopping diffusion of large particles in entangled
polymer gels are summarized in Table 1.

Figure 5. Particle diffusion coefficient. Dependence of particle
diffusion coefficient D(d) on particle size d in entangled polymer
networks (solid line) and entangled polymer melts (dashed line). In an
entangled polymer networks, for small particles with size d < ae, the
particle diffusion coefficient is inversely proportional to the minus
third power of particle size: D ∼ d−3.31 Particles of intermediate sizes
(ae < d < ax

2/ae) experience hopping diffusion between entanglement
cages: D ∼ exp(−d/ae) (see eq 27). Large particles in permanent
networks (ax

2/ae < d < dm (eq B.19)) experience hopping diffusion
between network cages: D ∼ exp(−d2/ax2)/d (see eq 14). Extremely
large particles d > dm are permanently trapped in the network. In an
entangled polymer melt, the particle motion is dominated by hopping
diffusion for particles with size ae < d < dc: D ∼ exp(−d/ae) (see eqs 27
and 34). Particles larger than dc have to wait for the polymer melt relax
to diffuse and they “feel” the bulk viscosity: D ∼ 1/d. D0 ≃ kBT/(ηsb)
corresponds to the diffusion coefficient of a monomer. Y-axis is
logarithmic; X-axis is linear.

Macromolecules Article

DOI: 10.1021/ma501608x
Macromolecules 2015, 48, 847−862

852

http://dx.doi.org/10.1021/ma501608x


4. ENTANGLED POLYMER LIQUIDS: COMPETITION
BETWEEN HOPPING DIFFUSION AND CHAIN
REPTATION

In our previous work,31 we discussed the motion of particles in
entangled polymer liquids. Here we revisit this problem taking
into account the contribution of hopping to particle mobility.
The motion of large particles (d > a) in entangled polymer
liquids is due to both hopping mechanism and chain relaxation
by reptation. In order to diffuse, the particles either have to hop
between confinement cages or wait for polymer liquids to flow
around these particles. The particle motion is not affected by
the entanglements at time scales shorter than the relaxation
time τe of an entanglement strand (see Figure 6 and ref 31). At

time scales longer than τe, the large particles are trapped by
entanglement cages and cannot move further until a certain
time scale τliq. The physical meaning of the onset time scale τliq
of particle diffusion is determined by the fastest of the two
processes that dominates the particle motion at long time
scales. The motion of large particles in entangled polymer
liquids due to chain reptation process has been discussed in ref
31. In section 3, we have discussed the mechanism of hopping
diffusion of large particles in entangled polymer solids. These
results can be directly applied to describe the hopping diffusion
in entangled polymer liquids (melts and solutions) for large
particles with size d larger than the entanglement strand size ae
≃ bNe

1/2. In the following, we compare the mean-square
displacement of large particles in entangled polymer melts due
to hopping mechanism and the mean-square displacement due
to the chain relaxation (reptation) process.
The motion of large particles (d > ae) in entangled polymer

liquids due to hopping is the same as that presented in section
3; the mean-square displacement on time scale t > τe is
described by eq 26. Another process contributing to the particle
motion at time scales longer than τe is chain reptation.31 Large
probe particles can also diffuse by waiting for polymer chains to
relax at reptation time scale τrep

τ τ≃ N N( / )e erep
3

(29)

which increases as cube of degree of polymerization N and τe is
the relaxation time of entanglement strand (eq 23) containing
Ne Kuhn segments.
Mean-square displacement of large particles due to chain

reptation process is

τ η τ⟨Δ ⟩ ≃ ≃ >r t ba d t k T d t t( ) ( / ) / [ /( )] , fore
2

rep
liq 2

rep B rep

(30)

in which η ≃ [kBT/(bae
2)]τe(N/Ne)

3 is bulk viscosity of
entangled polymer melts. Assuming no coupling between the
two processes (chain reptation and hopping diffusion) the net
mean-square displacement of the large probe particle in
entangled polymer melts can be written as the sum of
contributions from both processes

τ τ τ

⟨Δ ⟩ ≃ ⟨Δ ⟩ + ⟨Δ ⟩

≃ + + >

r t r t r t

ba d t t t

( ) ( ) ( )

( / )(1 / / ), fore e

2 2
rep
liq 2

hop
liq

2
hop
ent

rep

(31)

in which τhop
ent is the crossover time between fluctuation plateau

and hopping diffusion (eq 26).
The corresponding terminal particle diffusion coefficient is

τ τ≃ +D ba d( / )(1/ 1/ )e
2

hop
ent

rep (32)

The polymer relaxation (reptation) time increases as power
law of the degree of polymerization (eq 29), and at the
crossover value of the degree of polymerization Nc the reptation
time τrep becomes comparable to τhop

ent .

≃
⎡
⎣
⎢⎢
⎛
⎝⎜

⎞
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⎛
⎝⎜

⎞
⎠⎟
⎤
⎦
⎥⎥N N

a
bd

d
a

expc e
e

e

2 1/3

(33)

The description of particle mobility in entangled polymer melts
can be extended to polymer solutions by substituting Kuhn
monomer size b by the correlation length ξ (eq D.2) and
including concentration dependence of all other quantities, Ne
(eq F.3) and ae (eq F.1) as shown in Appendix F.
The mean-square displacement of the large probe particle in

polymer liquids with degree of polymerization larger than Nc is
dominated by the hopping diffusion (see solid line in Figure 6).
The mobility of probe particles in liquids with shorter polymers
(N < Nc) is dominated by chain relaxation process. Note that
the reptation time τrep is independent of the particle size,
whereas the time scale τhop

ent increases exponentially with particle
size d (see eq 26). Therefore, for a polymer solution with fixed
polymer length N and concentration above the entanglement
onset we can introduce the crossover particle size dc

ξ

ξ

≃ −

≃ −

d a N N a d

a N N a

[3 ln( / ) ln( /( ))]

[3 ln( / ) ln( / )]

c e e e c

e e e

2

(34)

at which the hopping time scale τhop
ent is comparable to the

reptation time τrep. Note that in the second line of eq 34, we are
assuming dc ∼ ae, as the numerical solution of eq 34 gives dc on
the order of ae.
Thus, there is an interval of particle sizes (ae < d < dc) for

which the terminal particle diffusion coefficient is dominated by
the contribution from hopping diffusion, whereas for particles
with size d larger than dc (see eq 34) it is dominated by the
contribution from chain reptation process.

Figure 6. Time dependence of mean-square displacement of large
particles (d > ae) in entangled polymer liquids. Illustration of the case
at which τliq is determined by hopping process with τliq ≃ τhop

ent if d < dc
or N > Nc (eqs 33 and 34) with mean-square displacement described
by eq 26, as shown by the solid curve. The motion of large probe
particles at time scales shorter than τe is not affected by
entanglement.31 At time scales longer than τe large probe particles
are trapped by entanglement mesh, but they do not have to wait for
the polymer liquids to relax to move further (dash-dotted line);
instead, they can diffuse by hopping between neighboring entangle-
ment cages (solid line with unit slope for t > τhop

ent ). Logarithmic scales.
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ξ τ η
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The interval of particle sizes (ae < d < dc) within which the
particle motion is dominated by the hopping process is of
significant width to be tested by experiments or computer
simulations. For instance, the crossover particle size could be of
one order of magnitude larger than the tube diameter (dc ≃
10ae) in a highly entangled polymer liquid with N/Ne ≃ 50
entanglements per chain and typical ratio of tube diameter ae
and correlation length ξ of ae/ξ ≃ 5. The motion of very large
particles with size larger than dc (eq 34) is diffusive with their
terminal diffusion coefficient inversely proportional to the bulk
viscosity and the particle size. Note that above we describe the
dependence of terminal particle diffusion coefficient D(d) on
particle size d. By including the concentration and molecular
weight dependencies of corresponding parameters, ξ, ae, τe, and
η, one can obtain the dependence of particle diffusion
coefficient D on solution concentration ϕ, and degree of
polymerization N (polymer molecular weight M), as discussed
in Appendix F.
To summarize: (1) There is a range of particle sizes (ae < d <

dc (eq 34)) in which the particle motion is mainly determined
by hopping diffusion; (2) the hopping diffusion coefficient of
large particles decreases exponentially with increasing particle
size d (eq 27 and Table 1); (3) very large particles with size
greater than dc have to wait for polymer liquids to relax and
flow around them in order to diffuse.31 The dependence of
terminal diffusion coefficient of particles on their sizes in an
entangled polymer melt is presented by the dashed line in
Figure 5. Note that microrheological approach works only for
these very large particles with d > dc, while for smaller particles
it leads to the underestimation of polymer viscosity due to
faster particle diffusion by hopping process.

5. CONCLUSION
In this work, we have discussed the mobility of large particles
subjected to topological constraints. The topological con-
straints could be network cages in unentangled polymer solids
(networks and gels), entanglement nets in polymer liquids
(melts and solutions), or both entanglements and network
cages in entangled polymer solids. We introduce a novel
hopping mechanism to describe the diffusion of large particles
with size d larger than the network mesh size ax and/or the
entanglement mesh size ae. We argue that although the large
particles experience the topological constraints from the
network (entanglement) cages, they can still diffuse by waiting
for the fluctuations of the surrounding confinement cages,
which could be large enough to slip around the particle.
In unentangled polymer solids (ax < ae) the large particles are

trapped by network cages at long time scales (t > τx). To move
(hop) between cages, these particles have to wait for time τw, at
which the fluctuations of network strands become large enough
to allow the particles to hop between cages. The hopping step
occurs by just one network loop out of many overlapping ones
that slips over the particle. The resulting hopping step size Δr
of a particle is on the order of a monomer size in dry polymer
networks or melts and on the order of correlation length in gels
and entangled polymer solutions. Note that this hoping step
size is much smaller than the network mesh size and is
independent of particle size d, which is qualitatively different

from prediction in ref 34. Hopping diffusion coefficient of large
particles in unentangled networks exhibits exponential depend-
ence on the square of the ratio between the particle size and the
network strand size: Dhop

net ∼ (ax/d) exp (−d2/ax2).
In addition to permanent cross-links, polymer solids can also

contain entanglements. Particles diffusing in weakly cross-
linked polymer solids are primarily constrained by entangle-
ments. Unlike the chemical cross-links, the constraining effect
due to entanglements softens upon chain elongation and thus
the corresponding free energy barrier for hopping diffusion
between neighboring entanglement cages is weaker. The
corresponding diffusion coefficient of large particles (ae < d <
de ≃ ax

2/ae) in entangled networks has relatively weaker
dependence on particle size, Dhop

ent ∼ exp (−d/ae), in comparison
to unentangled networks. We would like to stress that our
model predicts linear dependence of the hopping energy barrier
on particle size d, which is qualitatively different from that in ref
34, in which the hopping barrier is expected to be
asymptotically proportional to the particle volume d3. It is
worthwhile to note that the barrier height predicted in ref 34 is
similar to our estimate for the energy of embedding a particle
into the polymer network (Appendix C).
In contrast to particle motion in entangled permanently

cross-linked networks, for which hopping is the only
mechanism allowing long-time diffusion, large particles in
entangled polymer liquids can also diffuse by allowing these
liquids to flow around them at time scales longer than the
relaxation time. We show that particles with intermediate size ae
< d < dc (see eq 34) diffuse primarily by hopping between
neighboring entanglement cages, while extra large particles (d >
dc > ae) have to wait for the polymer liquids to relax as the
entropic energy barrier for hopping between neighboring
entanglement cages becomes extremely high.
The hopping process provides the mechanism for diffusion of

particles with size several times larger than the mesh size of
unentangled polymer networks and tube diameter of entangled
polymer solids and liquids. For instance, recent experiments
studying the diffusion of gold nanoparticles with size slightly
larger than the entanglement length in polystyrene solutions
show that the particles experience viscosity smaller than the
macroscopic value.41 It is possible that the diffusion coefficient
of these particles with size d > ae is due to hopping. We are
looking forward to more systematic experimental and computer
simulation tests that will provide more information about
diffusion of particles with size larger than the network
(entanglement) mesh size. Furthermore, a natural extension
of the results presented in this paper could be the mobility of
particles in reversible polymer liquids42 and solids,43 which will
be presented in a future publication.

■ APPENDIX

A. Concept of “Elementary” Networks
Consider the motion of a probe particle of size d in a dry,
monodisperse unentangled permanently cross-linked network.
Let us denote the number of Kuhn monomers between two
neighboring cross-links by Nx and the size of a network strand
by ax ≃ bNx

1/2, where b is Kuhn length. In a typical network
there are many network strands overlapping within the volume
pervaded by a network strand. The overlap parameter P ≃ Nx

1/2

is defined as the number of network strands within the volume
ax

3 ≃ (bNx
1/2)3 pervaded by one network strand.
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To understand how this strong overlap of network strands
affects the topological structure of the network, we consider an
ideal, unentangled polymer network, formed by end-linking
monodisperse precursor linear polymers. Each cross-link joins f
ends of such polymers. The topology of the network is fixed
once the network is formed. The network has a topological
Cayley tree-like structure, as illustrated in Figure 7a for example

of f = 4. The number of network strands at the lth generation is
( f − 1)l−1, which grows exponentially with the generation
number of the tree. These network strands heavily overlap with
each other, resulting in many network strands within the
pervaded volume of a particular strand. As a result, network
strands form loops that contain many generations of the tree
per loop, as shown by the colored, thick lines in Figure 7a. In
contrast, there are not many small loops, as network strands on
these topological scales are connected into a treelike structure.
To estimate the loop size, we imagine that an ant starts from

one end of a network strand, walks along network strands with
step size of the network strand size ax, passing the cross-links,
and reaches the starting monomer of the strand after l steps
along the loop, as illustrated in Figure 7b for l = 3. The number
of possible ways to form a loop of l network strands by end-
linking the first network strand and one of the network strands
at the lth generation of the Cayley tree is ( f − 1)l−1. The
probability that two ends of such tree are inside the contact
volume b3 is

φ ≃ − ≃ −− −l f
b

a l
f

P l
( ) ( 1)

( )
( 1)

1l

x

l1
3

1/2 3
1

3 3/2
(A.1)

where (axl
1/2)3 is the volume pervaded by linear chain of l

network strands and P ≃ ax/b = Nx
1/2 is the overlap parameter

of network strands. An average number, l,̅ of network strands in
a loop is determined by the condition φ(l)̅ ≃ 1, which gives

̅ ≃l Pln (A.2)

The size of such a loop is al ≃ axl ̅1/2, logarithmically larger than
the network strand size, ax. Below we use this ideal network
model, with cross-link functionality of f = 4 as an example, to
discuss the diffusion of a large particle in the network.
Diffusion of a large particle in the unentangled network

involves stretching of the loop due to its slipping around the
particle. To understand how the large embedded particle
deforms the minimal loops of real networks (Figure 8a), we

first consider a simplified picture by modeling the unentangled
polymer network as P* independent, overlapping de Gennes c*
networks of minimal loops,35 as illustrated in Figure 8b. Each c*
network has overlap parameter on the order of unity. Similar to
the “real” network, a loop in a c* network has l ̅≃ ln P network
strands connected by cross-links most of which are bifunctional,
as shown in Figure 8b.
Unlike the overlap parameter P of strands of a real network,

P* denotes the overlap parameter of all linear strands of
overlapping c* networks. Therefore, the value of P* ≃ (Nxl)̅

1/2

≃ Nx
1/2(ln Nx)

1/2, as a mesh loop in such networks consists on
average of Nxl ̅monomers.
At equilibrium, the particle is located in entropic cages in

each of c* networks. Each c* network pulls the particle towards
the center of its network cage. At the center of the cage, ci, the
elastic force applied to the particle is zero in the absence of
other c* networks. However, the particle is confined by all c*
networks. Therefore, the average position of the geometric
center of the particle, r, is not at the equilibrium position ci of
any particular c* network and is determined from the minimum
of free energy. The total deformation energy is the sum of the
contributions from P* unconnected c* networks:

∑= = −
=

*

U r U U kr r r c( ) ( ), ( )
1
2

( )
i

P

i i i
0

1

0 0 0 2

(A.3)

Figure 7. Illustration of loops in a network formed by end-linking a
melt of unentangled linear chains by cross-links with functionality f =
4. Network strands, consisting of Kuhn segments with size b, have
random conformation, as shown by the curved lines, and represented
by straight lines of size ax. (a) Topological illustration of treelike
structure of the network (Flory model). In reality, the network stands
strongly overlap with each other; the network strands belonging to
higher generations of the tree meet and form loops, as shown by the
colored, thick (both solid and dashed) lines. Dashed lines denote
bonds between pairs of strands that are close in space, but remote on
topological tree. b) An ant walking along the network strands arrives at
its starting monomer (green circle) after l steps of size ax. Line
thickness corresponds to the generation of steps on the tree. The path
of the ant forms a loop (dotted lines) with the size about axl

1/2. There
are ( f − 1)l−1 chain ends (blue circles) randomly distributed in the
volume (axl

1/2)3.

Figure 8. Unentangled network formed in a melt of precursor linear
polymers by end-linking them using cross-links with functionality f = 4.
(a) A loop of an unentangled polymer network consists on average of l ̅
≃ ln P network strands, as shown by the thick lines. The overlap
parameter of network strands P ≫ 1, and typical loop size, al ≃ axl ̅1/2,
is larger than network strand size, ax. (b) The unentangled network
can be constructed using P* de Gennes c* networks as building blocks.
Each c* network has the overlap parameter of network strands on the
order of unity. Each color represents one c* network. A minimal loop
in a c* network has l ̅ network strands connected to each other mostly
by bifunctional units, as illustrated by red half-circles. (c) By random
cross-linking bifunctional units of P* overlapping c* networks, one can
construct a “real” unentangled polymer network, shown in part (a).
Taking two c* networks, parts b(i) and b(ii), for example, the cross-
linking process is represented by unifying two half circles to form a full
circle, labeled by dashed circles.
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The elastic constant, k0, of an unconnected c* network is (see
Appendix B.2)

≃k k Td a/ l
0

B
3

(A.4)

where al is root mean square fluctuation of a strand size in an
unconnected c* network. The size of these fluctuations is on
the order of the average loop size al ≃ axl ̅1/2, and does not
depend on network deformation.
While the above results are for P* unconnected c* networks,

in reality c* networks are strongly connected; each loop in a
“real” network is connected to neighboring loops, as illustrated
in Figure 9a. Therefore, the deformation of one loop affects

other connected loops. To describe correlated deformation of
these loops, we allow bifunctional connections along strands of
c* networks to randomly pairwise cross-link to form tetrafunc-
tional cross-links, connecting different c* networks, as
illustrated by the transition from half to full circles in Figure
8c. Such random cross-linking of on average l ̅ ≃ ln P
bifunctional units per loop results in formation of a “real”
polymer network from P* initially unconnected overlapping c*
networks.
The deformation of a single c* network after such cross-

linking is affected by the c* networks connected to it. Below we
show that elastic properties of real networks do not depend on
the number l ̅ of strands in a loop. Therefore, the total
deformation energy of the real network due to the inserted
large particle can be expressed as a sum over P ≃ Nx

1/2 inter-
connected c* networks and contains two parts:

∑ ∑= − + − −
= = >

U k kr r c r c r c( )
1
2

( ) ( )( )
i

P

ii i
i j j i

P

ij i j
1

2

, 1;

(A.5)

The “diagonal” elastic constants, kii, account for the
deformation of network strands within c* network i. The
“off-diagonal” constants, kij,i≠j, account for correlations in
deformation of network strands in c* networks i and j due to
their connectivity. Since we take the number P of c* networks
in eq A.5, which is slightly less than the number P* ≃ Pl ̅1/2 in
eq A.3, elastic constant kii and center of cage coordinates ci are
renormalized. Equating the corresponding quadratic terms in

eqs A.3 and A.5, (1/2)P*k0r2 = (1/2)Pkiir
2, we find kii = k0l ̅1/2.

The distance between neighboring cages |Δci| ≃ al is weakly
affected by this renormalization.
Since two bifunctional units of the loop after cross-linking

form one tetrafunctional cross-link, there are about l ̅ tetrafunc-
tional cross-links per loop. These tetrafunctional cross-links
connect the loop to l ̅ neighboring loops from different c*
networks, as illustrated by the dashed circles in Figure 8. We
call such loops with shared tetrafunctional cross-links “directly
connected”. Therefore, about l ̅ loops from other c* networks
are directly connected to a particular loop in given c* network.
These loops “directly connected” to loop i are deformed by the
large particle in parallel with the loop i.
“Off-diagonal” elastic constant kij depends on connectivity of

deformed loops in c* networks i and j. If a loop of c* network j
is directly connected to a loop of network i (see Figure 9a),
deformations of both loops are strongly correlated and off-
diagonal elastic constant is on the same order of magnitude as
the diagonal one, kij ≃ kij ≃ l ̅1/2k0. If these loops are only
indirectly connected, correlations in their displacements are
relatively weak. The connectivity can be characterized by the
minimal chemical path connecting loops i and j through
network strands (see Figure 7). Note that there is only one
path connecting any two cross-links separated by number of
strands l < l,̅ suggesting that the real network has a treelike
structure on scales shorter than loop size al ≃ axl ̅1/2.
Consider a loop in c* network i which is indirectly connected

to a loop in network j by a path containing l > 0 minimal Nx-
strands. Correlations between deformations of the two loops
quickly decay with the number of network strands l along the
shortest chemical path connecting the loops, since the elastic
stress applied to a deformed strand is divided between all
(exponentially large number of) strands at distance l.
Therefore, the elastic constant, kij, corresponding to such
“indirect” connection of loops is relatively weak compared to
“diagonal” and “direct” constants.
Equation A.5 can be rewritten as the sum of P independent

quadratic potentials

∑= + = −
=

U U U kr r r r r( ) ( ) const, ( )
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2
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i i i
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(A.6)

where the elastic constant k is obtained using eq A.4 with al ≃
axl ̅1/2
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by neglecting the contribution of weak “indirect” elastic
constants kij and using kij ≃ kii ≃ l ̅1/2k0 for l ̅ pairs of directly
connected c* network loops. Equation A.7 is in agreement with
independent calculation of the elastic constant of elementary
network in Appendix B.2. The eqs A.6 and A.7 allow us to
interpret P inter-connected c* networks as P independent
elementary networks. Comparing to eqs A.5 and A.6 we find
that the coordinate of the center of the ith elementary network
cage is related to corresponding P coordinates of c* networks as

∑=
=

k

k
r ci

j

P
ij

j
1 (A.8)

The ratio kij/k is about 1/l ̅ for c* networks i and j with directly
connected loops, as for a particular c* network i there are about

Figure 9. Connection between different loops. (a) A network loop i
(solid line) deformed by the particle is directly connected through
tetrafunctional cross-links (circles) to different loops (1, 2, and 3,
different styles and colors). We also show positions of the centers of
corresponding confinement cages. The conformations of strands in a
“real” network are not straight and cages consist of several loops. (b)
The loops are parts of different c* networks, shown by dimmed lines.
The cage is composed of loops of c* network i and l ̅ directly
connected loops of different c* networks (j = 1, 2, 3). The coordinate
ri of the cage center in a real network is the average of the
corresponding center coordinates c1, c2, c3 and ci; see eq A.8
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l ̅ directly connected c* networks j. This ratio kij/k is relatively
small for c* networks i and j with indirectly connected loops.
Therefore, ri in eq A.8 can be interpreted as the average of
positions of centers cj for l ̅ directly connected cages, as
illustrated in Figure 9b.
We would like to emphasize the importance of eq A.6. It

suggests that the deformation of a real unentangled network
can be interpreted as the deformation of P unconnected
networks. We call them “elementary” networks; the elastic
modulus k of an “elementary” network is represented by eq A.7,
and the center of the cage of i-th “elementary” network ri is
described by eq A.8. Notice that eq A.7 indicates that the
amplitude of fluctuations of a cross-link in elementary networks
is ax, which is smaller than the loop size al.
Elementary networks represent elastic and fluctuation

properties of a “real” network. Fluctuations of a strand of
“real” network can be described by the composite chain
model36 that includes one “real” network strand and two virtual
chains, as shown in Figure 10. A virtual chain has size about ax,

although it represents the tree of much larger size on the order
of al. Therefore, the fluctuation of ends of real chains is also
about ax and is smaller than the loop size, ax < al.
The size of a cage that confines the particle in “elementary”

network can be interpreted as the step size, Δri, of the particle
hopping between neighboring “cages”. This step size can be
estimated using the connection between elementary and c*
networks (see eq A.8). During a single hop, not only one loop
of a c* network is strongly deformed, but l ̅ loops directly
connected to this particular loop are deformed by the particle.
Therefore, although the distance between two neighboring cage
centers in an inter-connected c* network is |Δcj| ≃ al, the
hopping step size

∑Δ = Δ
=

k

k
r ci

j

P
ij

j
1 (A.9)

in an “elementary” network is relatively smaller, due to
simultaneous deformation of l ̅ directly connected network
strands. The mean square of the step size is

∑⟨Δ ⟩ = ⟨ Δ ⟩ ≃ ̅
̅

≃
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suggesting that the cage size of an “elementary” network is also
ax.
Since all l ̅directly connected loops of real network deform in

parallel, when the particle hops between elementary network
cages, in fact they deform simultaneously with l ̅ cages of
different c* networks. Deformation energy of an unconnected
c* network cage is

Δ * ≃ ≃
̅

U k T
d
a

k T
d

a ll x
B

2

2 B

2

2
(A.11)

The energy barrier for hopping diffusion between “elementary”
network cages is l ̅ times higher than ΔU*:

Δ ≃ ̅Δ * ≃U l U k Td a/ xB
2 2

(A.12)

The “elementary” network model is used to calculate the key
parameters, step size and energy barrier, for hopping diffusion
of a large particle in an unentangled network.
B. Polydispersity of Polymer Networks
There are two major sources of variation in loop size. The first
is related to variations in the number of network strands per
loop, and the second is related to variations in the number of
monomers per strand. Below we consider both of them in more
details.

B.1. Statistics of the Number l of Network Strands per
Loop. We approximate the probability distribution of the
number l of network strands in a loop by eq A.1 with cutoff at l
= lmax:
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Near the cutoff we can expand (lmax/l)
3/2 in this expression in

powers of lmax − l:

φ
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The cutoff lmax can be found from normalization condition

∑ φ =
=

l( ) 1
l

l

1

max

(B.3)

Substituting expansion B.2 we obtain

φ + + ··· =
⎡
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⎤
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3
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1
(B.4)

Two constants in this equation can be simplified after changing
the summation index k = lmax−l:
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Expanding the upper limit in these sums to infinity we find

≃
−
−

≃
−

−
C
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f
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2

,
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(B.6)

At large lmax ≫ 1, we can neglect correction term 1/lmax in eq
B.4 and obtain

φ ≃
−
−

l
f
f

( )
2
1max

(B.7)

Figure 10. A composite chain36 of a “real” network in Figure 8a
consisting of a real chain (solid red) connected by its ends to two
virtual chains, as shown in the right figure. Virtual chains represent
treelike series of strands, as shown by dotted and dashed lines of
different colors respectively (left figure); lines of different thickness
corresponds to generations along the tree.
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Similar calculation of the average number of strands in a loop
gives

∑ φ̅ = = − Δ
=

l l l l l( )
l

l

1
max

max

(B.8)

where

∑ φ φΔ = − ≃ ≃
−=

l l l l l C
f

( ) ( ) ( )
1

2l

l

1
max max 1

max

(B.9)

and we substituted expansion B.2 and neglected the correction
term ∼1/lmax similarly to eq B.4. Therefore, the average l ̅ almost
coincides with the cutoff l ̅ ≃ lmax.
Mean square variation of the strand number in a loop is

calculated similarly to eq B.9:

∑δ φ= − ̅ ≃
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−=

l l l l
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2

1

2
2
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At P≫ 1 we get δl2 ≪l ̅2. Therefore, we can neglect fluctuations
of the number of strands in a loop.
B.2. Statistics of Energy Barriers. The variation of the

number of monomers N in a strand can be described by
Poisson distribution

= ̅ − − ̅P N N( ) e N N1 /
(B.11)

where N̅ is average number of strand monomers. The
dispersion of this distribution is

∫δ = − ̅ = ̅
∞

N N N P N N N( ) ( ) d 22

0

2 2
(B.12)

Below, we discuss how such strong polydispersity in strand
length affects energy barriers.
For a polydisperse network eqs A.11 and A.12 for the energy

barrier take the form:

∑Δ ≃
=

U k T
d

b Li

l

i1
B

2

2
(B.13)

where the number of Kuhn segments in a loop of i-th c*
network is

∑=
=

L Ni
j

l

ij
1 (B.14)

This free energy barrier varies between different locations
within the polymer network due to the polydispersity of loop
sizes. It could therefore be possible that a large particle is
localized within a particular region of the network surrounded
by small loops (large free energy barrier for the particle to
escape). In this case the particle motion is affected by the
polydispersity of the network loops. If the particle size is not
very large, however, it is possible that the particle diffusion is
not affected by network polydispersity, because the variation of
the free energy barrier caused by the difference in loop length is
less than thermal energy kBT.
To explore this variation, we expand eq B.13 in the variation

of the number of monomers per strand δNij = Nij − N̅

∑
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Assuming that δNij is uncorrelated for different strands, the
variation of the sum is
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In the case of Poisson distribution, eq B.12, this equation
becomes Σi,j2 = 2l ̅2. Typical value of the sum in eq B.15 is

∑
δ

̅
≃ ± ̅

=

N

N
l

i j

l
ij

, 1 (B.17)

Therefore, the variation of the barrier energy δ(ΔU):

δ Δ ≃ ± ̅U k Td a l( ) /( )xB
2 2

(B.18)

The crossover particle size dm is given by the condition
|δ(ΔU)|d=dm ≃ kBT, which gives

≃ ̅ ≃d a l am x l
1/2

(B.19)

For particles with size smaller than this crossover value the
fluctuation of the free energy barrier is less than kBT. Therefore,
the particles diffuse as if they are in a monodisperse network
and the polydispersity of network loops is not essential. Note
that the particles in this regime are still subjected to the
confinement of the network cages, as their size d is larger than
the size ax of the network cage, but they do not “feel” the
polydispersity of the network. At the crossover particle size dm,
the particle diffusion coefficient drops by the factor of e−l ≃ 1/P
≪ 1. The current paper focuses on this very interesting regime
(ax < d < dm) in which large particles feel the confinement from
the network cages, but not the polydispersity of the network
loops.
C. Linear Restoring Force Confining a Particle in a Network
Cage
If a large particle (d > ax) deviates from the center of the
network cage by a small distance, the “elementary” network
tends to drag the particle towards the center of the cage with a
restoring force. To estimate this restoring force, we need to
calculate the change in the deformation free energy of the
network due to a small displacement of the particle while it
stays in the same cage.

C.1. Embedding Energy. At equilibrium position the particle
“sits” in the network, expelling about (d/ax)

3 “elementary”
network strands to space just outside the particle. These chains
are stretched very inhomogeneously, with the strongest
stretching of chains displaced from the center of the particle.
Stretching factor λ(r) of chains that were at distance r from the
particle center decays as λ2(r) = d2/r2, which can be understood
as the ratio of surfaces d2 after displacement to particle
boundary and r2 before such deformation. Therefore, the elastic
energy of all such chains is

∫ λ= ≃U d k T r n r k T
d
a

( ) ( ) d ( )
a

d

x
in B

2
B

3

3
x (C.1)

in which dn(r) ≃ r2dr/ax
3 corresponds to the number of such

chains in an elementary network displaced from distances (r, r
+ dr) from the center of the particle. Thus, the energy of
embedding the particle into the elementary network is on
average on the order of kBT per “elementary”network chain
extruded from the particle volume.
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The large particle also deforms the network strands that were
outside of volume occupied by the particle, r > d. The strain at
distance r from the center of the probe particle in the
“elementary” network induced by the embedded particle is ϵ(r)
≃ d3/r3, in which d3 stands for the volume of the particle.
Therefore, the elastic deformation energy Uout for network
strands that were outside the particle is

∫ π= ϵ ≃
∞

U d
k T
a

r r r k T
d
a

( )
1
2

( )4 d
x d x

out
B

3
2 2

B

3

3
(C.2)

which is on the same order as the energy of elastic deformation
of all chains that were within the pervaded volume of the
particle. The total embedding energy Uelem ≡ Uin+Uout presents
the energy required to embed the particle into the elementary
network: Uelem ≃ Gelemd

3, where Gelem ≃ kBT/ax
3 is the modulus

of the elementary network. This result for embedding energy
Uemb ≃ Gxd

3 is also valid for a real unentangled network
consisting of P elementary networks with elastic modulus

≃ ≃G G P k TP a/x xelem B
3

(C.3)

C.2. Deformation Energy. Consider the deformation of
chains that were located inside the angular sector dΩe with
center at ri and direction of unit vector e due to particle
displacement by a vector δr from its equilibrium position ri in
the center of a cage in the ith “elementary” network. Since the
surface of the displaced particle is shifted from (d/2)e to (d/2)
e − δr, its radius in the direction e becomes |(d/2)e − δr|≃ d/2
− (δre) for small displacement δr ≪ d. The corresponding
change of deformation energy of an elementary network is
obtained by summing the changes of chain deformation
energies (see eqs C.1 and C.2) in all angular sectors dΩe:
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Since this deformation energy is parabolic function of δr, the
restoring force is linearly proportional to the distance δr from
the current location of the particle to its equilibrium position ri:

δ
δ

δ δ δ≃ ∂
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Δ ≃ ∼f r
r

U r k T
d

a
r r( ) ( )s

x
elem B 3

(C.5)

For an unentangled polymer network that is modeled by P
overlapping but noninteracting elementary networks, the total
change in the deformation energy becomes kBTP(d/ax

3)δr2 for
the particle with displacement δr from its free energy minimum
O, see Figure 2. Recall that the hopping step size for a particle
in an unentangled dry polymer network is about b (eq 5) and
the network strand size ax ≃ bNx

1/2 ≃ bP. Therefore, the
change in the deformation free energy is about kBTd/(axP),
which is much smaller than the deformation energy kBT(d/ax)

2

of a single slipping loop as P ≫ 1. Therefore, for both
“elementary”and unentangled polymer networks the entropic
energy barrier for hopping diffusion can be approximated as the
deformation free energy of the slipping loop (eq 6).
D. Diffusion of Particles in Unentangled Polymer Gels
Consider a gel prepared by cross-linking polymer chains in a
solution. The properties of a gel depend on the preparation
conditions (see Chapter 7 in ref 36). To keep our calculations

simple we limit our consideration to particle diffusion in gels at
preparation conditions.
An unentangled polymer gel can be treated as an “effective”

unentangled dry polymer network in which the “effective”
monomers are correlation blobs. Therefore, the results
obtained for particle hopping in dry polymer networks can be
readily applied to polymer gels with hopping step size b
replaced by the correlation length ξ and other parameters
replaced by the concentration dependent ones:
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(D.1)

However, this is not observable for time window τx < t < τhop
gel , in

which the particle displacement due to hopping is smaller than
that arising from fluctuations. In eq D.1, the concentration
dependent correlation length ξ is37
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where v is the scaling exponent that depends on the solvent
quality (v = 1/2 in a Θ solvent and v = 3/5 in an athermal or
good solvent). In eq D1, τw

gel is the waiting time for particle
hopping in an unentangled polymer gel which has the same
expression as τw

net in eq 7 but with network strand size ax and
relaxation time τx replaced by the concentration-dependent
ones (Chapter 9 in ref 36):
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The contribution to the mean-square displacement of a large
particle due to hopping ⟨r2⟩hop

gel is comparable to the mean-
square fluctuations of the trapped particle ξax

2/d at time scale
τhop
gel (see eq 12).

τ τ ξ≃ a d P d a[ /( )] exp( / )x x xhop
gel 3 2 2 2

(D.5)

The mean-square displacement of the particle at time scales
longer than τx can be approximated as the sum of mean-square
displacement due to fluctuation ξax

2/(dP) and mean-square
displacement due to hopping (eq D.1)

τ⟨ ⟩ ≃ +

>

r t a dP t

t t

( ) [ /( )](1 / ),

for

x

x

2 3
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(D.6)

and the corresponding terminal particle diffusion coefficient is

ξ τ= ≃ −D D a d d a( / )( / ) exp( / )x x xhop
gel 2 2 2

(D.7)
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The terminal diffusion coefficient of a large probe particle (d >
ax) in unentangled polymer gels exhibits exponential depend-
ence on the square of ratio of the particle size d to network

strand size ax (see eq D.7). One can rewrite eq D.7 as a
function of polymer concentration in the gel using eqs D.2 and
D.4:
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The terminal particle diffusion coefficient is reciprocally
proportional to the fourth power of concentration in Θ
solvents, D ∼ ϕ−4, while in athermal and good solvent
concentrations, the dependence enters not only in the
coefficient (as −15/8 power) but also in the exponential
through the concentration dependence of the barrier height.
E. Entanglement Effects Disappear for Very Large Particles
in Entangled Networks with ae < ax

2/ae < d
Consider the motion of large particles in entangled polymer
solids with low density of cross-links (d > ax

2/ae > ae).
Intuitively the motion of particles with size d > ae is expected to
be affected by the entanglements. However, for particles larger
than the crossover size de defined in eq E.1 below (ae < de < d)
the confinement from entanglements is not important. Indeed,
the local entanglements that surround these very large particles
do not “exist” anymore, because they are under large
deformation, leading to the slippage of entanglements towards
to the permanent cross-links,40 as shown in Figure 11.

Therefore, the hopping diffusion of very large particles d > de
in entangled polymer solids with low density of cross-links (ax
> ae) is controlled by the permanent networks and is similar to
the diffusion of large particles in unentangled polymer solids
(see section 2). At the crossover particle size de the tube
diameter ae′ of stretched network becomes comparable to the
network strand: ae′ ≃ ax. Taking into account the fact that the
tube diameter increases from ae to ae′ ≃ ae(de/ae)

1/2 due to non-

affine deformation of entanglements,40 the crossover particle
size is

≃d a a/e x e
2

(E.1)

which is about ax/ae times of the network strand size ax.
Mobility of relatively large particles (ax < d < de ≃ ax

2/ae) is
affected by both entanglements and permanent cross-links, but
dominated by the entanglements. This is because the entropic
free energy barrier due to permanent cross-links, kBT(d/ax)

2, is
smaller than that from entanglements, kBT(d/ae), for ax < d <
de. Therefore, the particle motion is similar to that discussed in
section 3.
F. Particle Diffusion Coefficient in Entangled Polymer
Liquids

F.1. Dependence of Particle Diffusion on Solution
Concentration. The contribution from hopping diffusion to
the concentration-dependent terminal diffusion coefficient can
also be applied to describe diffusion of particles with size d
larger than the tube diameter ae(1) of entangled polymer melts
without solvent. In addition to the two regimes expected for
particles smaller than the tube diameter ae(ϕ), there is an
additional regime in which the terminal particle diffusion
coefficient is affected by entanglements. This regime begins at
the solution concentration ϕae=d, at which the tube diameter ae
(see eq F.1) is on the order of the particle size d: ae(ϕae=d) ≃ d.
Concentration dependence of the tube diameter is

ϕ
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where ϕ is volume fraction of polymer solutions.44 Therefore,
the corresponding crossover concentration is

ϕ ≃
Θ

= ⎪
⎪⎧⎨
⎩

a d

a d

[ (1)/ ] ,

[ (1)/ ] , athermal
a d

e

e

3/2
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In this regime (ϕ > ϕae=d), the terminal particle diffusion
coefficient is determined either by hopping diffusion or chain
reptation process (see eq 32). Recalling the relations τe ≃ τ0(ξ/
b)3(ae/ξ)

4 (see eq 23) and τrep ≃ τe(N/Ne(ϕ))
3 (see eq 29) and

using eqs 9, D.2, 26, F.1 and the concentration dependence of
the degree of polymerization between entanglements

Figure 11. Very large particles do not “feel” confinement from
entanglements in networks with low density of cross-links (ae < ax).
(a) A polymer network with low density of cross-links, at which the
entanglement length ae is smaller than the network mesh size ax. (b)
Very large particles (d > de ≃ ax

2/ae, eq E.1) result in large deformation
of local entanglements, pushing them toward the permanent cross-
links, and therefore do not “feel” the existence of entanglements.
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one can simplify eq 32 to obtain the concentration dependence
of terminal particle diffusion coefficient by summing the two
contributions:
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In entangled polymer liquids of relatively short polymers (Ne
< N < Nc) the terminal diffusion coefficient is mainly controlled
by chain reptation process (see the second term in eq F.4). The
crossover degree of polymerization Nc increases exponentially
with relative particle size d/ae (see eq 33). For example, for ae/ξ
≃ 5 and d/ae ≃ 4 we have Nc ≃ 4Ne; if ae/ξ ≃ 5 and d/ae ≃ 10
we have Nc ≃ 22Ne.
In solutions of long polymers (N > Nc) there are two cases

for the terminal particle diffusion coefficient depending on
particle size. If the size of particles is not too large: ae(1) < d <
dc(1), where dc(1) represents the value of crossover particle size
dc (see eq 34) in polymer melt (ϕ = 1)

≃ −d a N N a b(1) (1)[3 ln( / (1)) ln( (1)/ )]c e e e (F.5)

the terminal particle diffusion coefficient is dominated by the
contribution from hopping.
For particles with size larger than dc(1), the hopping

diffusion still dominates as long as the solution concentration
is below ϕdc, at which the particle size d is comparable to
crossover size dc(ϕdc) (see eq 34). Using eqs D.2, 23, F.1 and
F.3, one can transform eq 34 into logarithmic concentration
dependence of the crossover particle size dc(ϕ) below which
the particle motion is dominated by hopping diffusion.
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(F.6)

Note that in this calculation the solution volume fraction ϕ is
above the entanglement volume fraction ϕe, suggesting that the
variation of the solution concentration is limited. Typically for
polymer solutions with long polymers N > Nc(ϕ), the crossover
particle size dc(ϕ) decreases slowly by less than 10% as solution
concentration increases by 20%. It suggests that changing the
solution concentration will not significantly enlarge the window
within which the particles experience hopping-dominated
diffusion.
Particles with size d larger than dc(1) are expected to

experience full solution viscosity above the crossover
concentration ϕdc and the terminal particle diffusion coefficient
is dominated by the contribution from chain reptation process
(see eq 30).
F.2. Dependence of Particle Diffusion Coefficient on

Polymer Length. Consider the motion of large probe particles
(d > ae) of fixed size in entangled polymer liquids with different
degrees of polymerization N but with the same concentration
ϕ. The contribution of hopping diffusion to the particle
terminal diffusion coefficient is not important if the degree of
polymerization N is smaller than the crossover value Nc (see eq

33). Within the window Ne < N < Nc the terminal particle
diffusion coefficient is dominated by the contribution from
chain reptation process and the large particles “feel” bulk
solution viscosity at times longer than solution relaxation time
τrep. The terminal particle diffusion coefficient is reciprocally
proportional to the solution viscosity η and decreases with
increasing degree of polymerization N as

η≃ ∼ >−D N k T d N N N( ) /( ) , for eB
3

(F.7)

The terminal particle diffusion coefficient will be mainly
controlled by the hopping diffusion for polymer liquids with
very high degree of polymerization (N > Nc). For instance,
using eq 35, one can estimate the ratio of particle diffusion
mechanism due to hopping diffusion to that due to chain
reptation:
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(F.8)

This is about 7 for ae/ξ ≃ 5, d/ae ≃ 5, and N/Ne ≃ 10. For
polymers with very high degree of polymerization (N > Nc) the
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diffusion coefficient is independent of polymer molecular
weight (see eq 27).
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